
C2
U3
a

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS .

TECHNICAL NOTE 2726

ON THE APPLICATION OF TRANSONIC SIMILARITY RULES

By John R. Spreiter

Ames Aeronautical Laboratory
Moffett Field, Calif.

Washington

June 1952 “ “
Iwhwc

#

— ----- ----
V./Y “’....“.55 –—— .-------- ---



lU

‘-=&&ARY K&, NM

Illlllluwllllllllll
OOb577jj

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ON THE

The transonic
, are discussed from

??IZCHIJICALNOTE2726
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SUMMARY

aerodynamic characteristics of wings of finite span
the point of view of a unified small perturbation

theory for subsonic, tr-=sonic, and supersonic flows about thin wings.
This approach avoids certain ambiguities which appear if one studies
transonic flows by means of equations derived under the more restrictive
assumption that the local velocities are everywhere close to sonic veloc-
ity. The relation between the two methods of analysis of transonic flow
is examined, the similarity rules and.known solutions of transonic flaw
theory are reviewed, and the asymptotic behavior of the lift, drag, and
pitching-moment characteristics of wings of-large and small aspect ratio
is discussed. It is shown that certain methods of data presentation are
advantageous for the effective display of these characteristics.

INTRODUCTION

.
The-small perturbation ~otential theory of transonic flow proposed

apparently independently by Oswatitsch and Wieghardt, Busemsnn
and Guderley, von ‘Karn& (references 1 through 6), and others is now
supplying a rapidly increasing fund of information regardhg transonic
flow about aerodynamic shapes. Solutions have been given recently for
the,flow around symmetrical no@_ifting airfoils at both subsonic and
supersonic speeds in papers by Guderley and Yoshihara, Vincenti
and Wagoner, Cole, Trilling, Oswatitsch, Gu+lstrand (references 7
through 14), and others. In the’application of these.results to specific
examples, two items of theoretical interest have been noted (see} in
particular, references 8, 17, and16): (a) The theoretical results
appear to be applicable at Mach numbers far removed from 1 even though,
in most cases, the results have been obtained from equations valid only
in the immediate neighborhood of sonic speed. (b) In the application
of theoretical results to specific examples at Mach nunibersother @ad 1,
it has been noted that certain ambiguities exist in the theoretical
determination of aerodynamic quantities. It is one of the purposes of

this report to investigate these two points. This iS .=com~shed bY
examining trsnsonic flow from the point of view of eClUatiOIM3

.
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that are valid throughout the Wch
neighborhood of sonic speed. Such
between the roles of linear theory
sonic rsmge.

The similarity rules protided

NAcf4m 2726

number range rather than only in the
an approach emphasizes the relation
and of nonlinear theory in the tran-

by the theory (references 5, 6,
and 17 through 20) have also proved to be useful in the correlation and
interpretation of experimental data. It is with the latter aspect of
the transonic-flowproblem that the present paper is primarily concerned.
In this paper, the similarity rules and their application to the specific
problem of concise presentation of lift, drag, and pitching-moment char-
acteristics of wings are given in detail. The known solutions of two-
dimensional transonic flow are reviewed and the asymptotic behatior of
the aerodynamic characteristics of wings of large and small aspect ratios
is examined. It is shown that certain methods of-data presentation are
advantageous for displaying these characteristics.

SYMBOLS

A aspect ratio

r(Y+l)(t/c)]l/3”

a speed of sound

a. speed of sound

a* critical speed

b wing semispan

A

in the free stream

of sound

CD drag coefficiefi..+

CDO drag c~efficient of symmetrical nonliftxlngwings

ACD contribution to drag coefficient due to lift

(Aw) [(y+l)(t/~)]l/”~D/a’]

CL lift coefficient

(c~a) i(7+1)(t/c)]‘@CL/~]

cm pitching-moment coefficient

( C~a) [(7+1)(t/c) ] l/s[CJa ]

CP pre~sure coefficient

-.—- —...— — —— —–-—— ——.— ...-. —.- . . . . .
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1

C.P. center-of-pressurefunction

c wing chord
.

Cb section drag coefficient of symmetrical no@ifting airfoils .

[( 7+1)I/s/(t/c)5/3] Cdo

&d contribution to section dr&g coefficient due to lift

(A=) [(7+1)(t/c)]l\3[Acd/a2]

section lift coefficient

[(7+1)(t/c)11’3[c2/a.l

D
1

Do

,( DA

do

dA

L

1

M

r.

.

m

s

t

U.

x,y,z

Xc.p.

(z/c)

drag

drag

drag

function

function for symmetrical nonlifting wings

due to lift function

section drag function for symmetrical nonlifting airfoils

section drag due to lift function

lift function

section lift function

pitching-moment function.

section pitching-moment

free-stream Mach number

pressure function

function

stretching factors defined in equation (B7)

maximum thiclmess of wing

free-stream velocity
1

Cartesian coordinates where x extends in the direction
the free-stream velocity

distance from wing leading edge to center of pressure

ordinates of wing profiles in fractions of chord

of
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angle of attack

a/(t/c)

7+1

ratio of specific “heats,for air 7 = 1.4

arbitrary constant

@02-1 )/[(7+l)(t/c)]%/~ ‘

ordinate-amplitudeparameter

velocity potential

perturbation velocity potential

Subscripts

values given by linear theory

conditions at the wing surface

FUNDAMENTAL CONCEPTS

Basic Equations

The quabi-linear partial differential equation satisfied by the
velocity potenti~ Q of steady isentropic flow of a perfect inviscid

gas can be expressed in the form

@Y’h @p _ 2 @’@x#zx=o2—
a2 *2

where the subscript notation is used to indicate differentiation
and a is the local speed-of sound given by the relation

(7-1 “a2=ao2-_
2

@x2 +
)

%2 + 422- U02

,

(1)

(2)

.— .. . .—-— —.——-- —. .-— .---. — .-. .— -.——----— —— -- ---- ---- . _._ .—— .
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In this latter equation U. and a. are, respectively, the velocity and

speed of sound in the free stream and 7 is the ratio of specific heats

(for air 7=1.4).

Introducing the perturbation velocity potential 9, where

9= -Uox + @ (3)

it is possible to express equation (1) in terms of the derivatives of 9
as follows:

()1-%2“’%#Pyywzz=

-1

.

(4)

If it is assumed that all perturbation velocities and perturbation
velocity gadients (representedby first ’and second derivatives, respec-
tively, of q) are smalJ and that only the first-order terms in small
quantities need be retained, equation (4) simplifies to the well-known
Prandtl-Glauert eqyation of linesr theory s

,.

(5)

\
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z
where the free-stream velocity is
directed along the positive x axis
as shown in sketch (a) and where ~
is the Mach number of the free stresm.
It is we3J_-lamwnthat equation (~)
leads to useful ’resultsin the study of
subsonic and supersonic flows about
thin wings and slender bodies but that
it is incapable, in general, of treat-
ing transonic flows. The failure of
linear theory in the transonic range is
evidenced by the calculated value of 9X
@-’* to such magnitude that it can
no longer be regarded as a small quan-
tity when compared with Uo.

Second-order theory for thin wings would involve solution of the
equation

(6) “

Actud.ly, we are interested in retaining higher-order terms only to
the extent that is necessary to allow the study of transonic flow.
Examination of the known characteristics of transonic flow fields indi-
cates that the first term on the right can often become of importance
and should be retained. The remainder of the,terms on the right can
never become lsrge for transonic flows about thin wings at small angles ‘
of attack and can be safely disregarded. Furthermore, since the right-
hand side is merely an approxtion to allow the treatment of transonic
flows and rapidly diminishes in magnitude as m departs from unity,
the equation maybe further siqd.ified without much, if any, loss in
accuracy by setting ~ = 1 in the coefficient of the term on the right.
(If one does not wish to make this added approximation, the results of
this paper should be altered by replacing 7 + 1 tith %2(7+1)

-. — -. ..— ——- .—. ___ _.. .___. . . . .
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,

wherever it occurs.) The simplified equationl is

(7)

In addition to satis~ the differential equation, the perturba-
tion yotential must provide flows compatible titl-the
requirements: (a) The flow must be uniform far ahead
(b) the flowmust betangential tothetigsurface.
following boundary conditions are to be specified for
potential:

atx=-m

at the wing surface, W

(Q. = (qz)o,= o=(~y)o

~ (9Z) ~s (azlax) .

foilowing physical
of the wing and
Therefore, the
the perturbation

(8)

(9)”

where (aZ@x) refers to the local.slope in the x direction of the wing
surface. Furthermore, it is consistent with’the assumption of.smsXl
disturbances to satisfy the second boundary condition on the two sides
of the ~ plane rather than on the wing surface. Equation (9) is
therefore replacedby

(lo)

lAlthough equation (7) is valid throughoti the Mach number ramge, it is
not the appropriate equation for the treatment of the ‘pseudo tran-
Sonictrflow fields which are to be found around three-dimensional
swept wings (constder, for instance, an infinite yawed wing) through
a limited range of supersonic Mach numbers. Since these flows are
characterizedby shock waves standing essentially normal to
the ~ plane but oblique to the fkee-stream direction, equation (6)
can be simplified only to the following: ‘

7-1
y~x~m+u: Vy Txy. ),

The discussion of these problems is outside the scope of the present
report.

_— —— .—-- .—-— —-—-—--- ---. . -. . - -—.-— ———--— --—--- —--—-- — ----- - _——
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where the shape of the wing profile is given by

(z/c) = Tf(x/c, y/b) (II)

where f(x/c, y/b) represents the ordinate-distributionfunction and T

is an ordinate-amplitudeparameter.2 W order to obtain unique and physi-
cally imp rt.antsolutions, it is necessary to assume the Kutta condition

8that the low leaves all subsonic trailing edges smoothly. To be com-
plete, consideration should also be given to the conditions of transition
through shock waves. This point has been discussed by Guderley (refer-
ence k) and by Vincenti and Wagoner (reference 9). They indicated that
(a) equation (7) is valid even if shock waves are present, and (b) the
shock conditions agree with the similarity rules. In’this’report, the
similarity rules are derived in appendix B and their compatibilitywith
the shock relations is demonstrated in appendix C.

Upon solving the above boundary-value problem for the potential, one
may determine the pressure coefficient by means of the formula

Cp = +x
o

.
(12)

o

Although Oswatitsch, Berndt, and Gullstrsnd (references 12, 13, 14,
19, and 20) have previously investigated transonic-flow phenomenon by
means of equations derived by assuming that all velocities sre small per-
turbations around the free-stream velocity U. as is done above, most
other workers have used equations derived under the more restrictive
assumptions that ill velocities are small perturbations around the criti-
cal velocity of sound a*. W the latter scheme, the perturbation poten-
tial is .definedby (see, for instance, reference 6 or 18)

and the resulting differential

‘?~ +

The correspondingboundary conditions are specified as follows:

2Note that, in general, a variation of T represents a simultarieous
change of the thicbess ratio, camber, and angle of attack. In the
special case of Q nonlifting wing.hadng symmetrical sections, T is
proportional to the.thiclmess ratio; for inclined flat-plate wings of
vanishing thickness, T is proportional to the angle of attack.

—— —.. —----- ----- —-—- -—. — ——.-— ---————- .—. .—. . .—----- .——.- —. =.. _____



.

.

.

(@x)0= Uo-a* *
()

- = l-~= ,
y+l

at the wing surface .

9

(15)

(16) ‘

where the shape of the wing profile is still given by equation (33.).
The equation for the pressure coefficients is approximated similarly,
thus,

(17)’

The two statements of the equations for transonic flow are clearly
identical at a Mach number of unity. Although the derivation of the
a* equations requires that the free-stream Mach number be very close to
unity, these equations have been used with good success by a riumberof
authors to calculate the aerodynamic forces on airfoils at Mach numbers
considerably removed from unity. In so doing, it tis been suggested that
it might be preferable to use more accurate relations for the pressure
coefficient or the boundary conditions;for instance, it has been suggested
that a* be replaced with U. in the equation for @. This matter
has been discussed at length in references 8, 15, and 16. Since no
restriction requiring the Mach number to be near unity is made in the
U. analysis, it is informative to examine the relation between the
results of the a* and the U. amalyses. This is done in appendix A.
It is found that the a* analysis if performed in a completely con-
sistent manner using equations (13~ through (17), @elds values for ~
that are identical to those given by the more general U. analysis.
This somewhat paradoxical result is achieved through the action of a
number of compensating effects and only applies to the pressures and the
forces and moments derivable therefrom. It should be noted, in particu-
lar, that the values of the local velocities and Mach numbers ~rotided
by the a* analysis for flows having free-stream Mach nunibersother thsm
unity are in error. Throughout the Wmainder of this report, the disc-
ussion will be based on the U. analysis.

It is important to recognize that wing theory based on equation (7)
J is valid for all Mach numbers below the hypersonic range. At subsonic

and supersonic speeds, equation (7) is of the same order of accuracy as
the Prandtl-Glauert equation of linear theory (equation (5)) although more
difficult to solve.., At ~ = 1, equation (7) is identical with equa-
tion (14), now widely used in the study of transonic-flow problem,.

.
. .

. .—. . .. . . . .. —-.-—-- -------- --- —-— ..-— ———— —...—— — ...-_— —— -.-——.-—— .—. ---- --



10 NACA TN 2726

On the other hand, there is no a priori method for determining
whether or not a solution of the equations of linear theory will be
‘valid in the transonic range. One can only decide by solving the prob-
lem under the assumptions of linear theory and’then inspecting the magni-
tudes of the terms, particularly of ~, to see whether or not they can
be regarded as smalJ qusmtities. If the terms are sufficiently small,
the linear-theory solution is presumed valid even though the Mach number
may be near unity. Linearized-theory solutions have been obtained for a
great number of practical wing problems and their behavior in the tran-
sonic range is now welJ-lnmwn. To review briefly: For unswept wings of
infinite span, linear theory indicates that the magnitude of Px on the

surface of a given airfoil is proportional to l//~; consequently,
9X approaches infinity as ~ approaches unity and the theory is
clearly inapplicable. For wings of finite span, however, the perturba-
tion velocities may he large or small at sonic velocity, depending on
the particular problem as discussed in detail in reference 21. Specifi-
cally, for three-dimensional lifting surfaces of zero thickness, the
velocities remain finite everywhere except at the leading edges, their ,
-itudes generally increasing with increasing aspect ratio and angle
of attack. For wings of nonzero thickness, however) 9X gener~ly
becomes large logarithmically as 1 - %2 approaches zero; consequently,
linear theory is inapplicable within some Mach number rsmge surrounding
unity. .

Summarizing, linear theory is applicable to lifting surfaces of
small or moderate aspect ratio at all transonic speeds, but fails for
wings of finite thiclmess within a range of Mach nunibersurrounding
unity. The range of inap@icability diminishes to zero as the aspect
ratio, thickness ratio, and angle of at~ck of the -g tend to zero=

In treating transonic flows for which linear theory is applicable,
it is often advantageous to consider the special case of sonic flow

(% = 1.)se~ate~o Equation (>) for the perturbation potential then
reduces to a particularly sin@e form

(3.8)

Solutions of egyation (18), in conjunction with the boundary conditions
given by equations (8) and (10), are identical to those of linear theory
found by solving equation (5) and subsequently setting ~ = 1, but can
be obtained with much less effort. Since, in addition, the results of
this simple theory, now generally lmown as slender-wing theory, are also
applicable to low-aspect-ratio lifting surfaces throughout the
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. entire Mach number ra@e, 3 a considerable number of solutions of slender-
wing theory have been presented in the..lastfew years. (See refer-
enc~s 22, 23, and 24.)-
at ~ = 1 to exactly

These results are, of course,
the same extent as the ??esults

applicable to flows
of linear theory.

Similarity Rules

k reference 6, von - ‘ derived similarity rules for the pressure
distribution, lift,-drag, and pitching moment of airfoils in transonic
flow using equations (13) through (17). The same equations were used in
reference 18 to determine the transonic similarity rules for wings of
finite span. The corresponding similarity rules of linearized subsonic
and supersonic wing theory were also derived and compared with the tran-
sonic similarity rules in the latter reference. It was shown that the
similarity rules of linear theory contain an arbitrary parameter and can
be expressed in many forms, one of which coincides with the similarity
rules of transonic flow.

It follows from appendix A and is demonstrated in detail in appen-
dti B that the similarity rules derived from equation (7) are identical
to those preciously given in references 6 and 18. The new derivation,
however, possesses the advantage,of befng based on a single statement of
the problem of wing theo’rythat is uniformly valid at subsonic, trsn-
sonic, and supersonic speeds. The similarity
and CD were stated in reference 18 to be

(7+1)1/3
P

~2/3

[

JT
CL =

(7+1)‘1” L [(7+1)T]l/3’

rules for ~, CL> cm,

.

%l?hisdual role of slender-wing theory stems from the two ways that one
can reduce equation (~) to equation (18). One can neglect the term
(1 - %2) Tn in comparison with qm and gzz either because CPm

is small, as may be the case with low-aspect-ratio wings or slender
bo~es, or because (1 - Mo2) iS zero, protided q= does not become
very lsrge in comparison with the other velocity gradients 9W
and qzz. The application of this theory to slender wings
antecedes the application to flows with sonic free-stream velocity,
hence the name slender-tiu theory.

._ . . .—.-— -- —
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~.
~2/3

{

m-

(7+1)1/~ M [(7+l)T]l/3’

CD =
~5/3

{

m

(7+1)1/3 D [(7+l)T]@ 1-A

(a)

(22)

where the geometry of related -s is given by equation (n):

(z/c) =Tf(X/C, y/b) “ ,

Equations (19) through (22) are functional equhtions. For example,
equation (19) is to be interpreted as stating that the pressure coef-

ficient Cp is equal 10 #-/3/(7+l)l/s times some function P of a

nuuiberof specified parameters. The foregoing equations have been

written for flows where ~ s 1. If ~>1, the radical j=

should be replaced with ~~~. l!hefunctions P, L, M, and D are
different, however, for mibsonic and supersonic flow; Consequently,
subsonic flows may be related to other mibsonic flows by the similarity
rules, but not to supersonic flows, and conversely.

It is i.mportqntto recognize that the similarity psmameters maybe
cotiined or regrouped in any msnner whatsoever, provided the same number
of independent parameters is always retained. For instance, in much of
what follows, it will be found desirable to use the square of

~/[(7+l)T]1/” ~dtoreplace-A ~thanewp~~e-
ter [(7+1)T]l@ A obtained by dividing ~’ A by

~/[(7+1) T]’/”. b terms of these parameters, the similarity
rules are

[

, %=(7~~f/3p [(7~~~~2\3S’ ‘(7+1) T]1’3A; ~Y~ 1
T2/s

I

2-
cL. —

(7+1)1/3 L % 1[(7+l)T]2/3’

cm =
T2/3

[

I&-l
[(7+1)T]113 A

(2+1)1/3 M [(7+1)T]2is’

1

[(7+1)T]li3 AI
(2s)

(24)

(25) .

,.

-————. .—. ..–. #. -—— ..—— ——.—————.
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.,

+5/3
CD =

[:

M&l
[(7+l)T]l/sA

(y+l)1/3 .D [(7+1)+]2/3’ ~
1

(26)

wherein the geometry of related win& is again given by equation (H).
,

Slope of Pressure Curve at ~ = 1

Liepmann,and Bryson (reference 15) have recently determined the
slope of the

%
versus ~ curve at ~ = 1 by means of the following

simple and intutive considerations. It is a’well-known fact that, at
slightly supersonic Mach nurribers,the detached bow wave is far away
from the airfoil and newly normal. It is also well lmown that the Mach
number downstream of a weak normal shock is as much below unity as the
Mach nunber upstream is above unity. Consequently, the pressure or Mach
number distribution on the airfoil should be independent of Mach numiber
in the neighborhood of ~ = 1. The slope of the ~ versus ~ curve
at & = 1 can thenbe found by simple ad direct means and is the fol-
lowing for thin airfoils:

Vincenti and Wagoner (reference 8) have found by means of similsr
considerations that a more exact relation is given by

,

(28)

Since the above derivation is based to a certain extent on physical
reasoning which may be either more or less exact than small perturbation
transonic theory, it is of interest from the present point of view to
determine the equivalent result from the model of transonic flow provided
by equation (7). The result, obtainedby a similarity type of _sis
and presented in detail in appendix D, is just ttit which would be found
if one actually solved equation (7). t

It is found that a solution for Mach numbers slightly less than
.-

unity satisfies the-differential equation and the boundary conditions at
the wing surface for flows with ldachnuuibersslightly geater than unity.
However, the velocity perturbations do not go to zero infinitely far
ahead of the wing, but gQ instead to the value corresponding to that
associated with a normal shock wave. If it can be assumed that the bow
wave approaches a normal shock wave standing infinitely far ahead of the
wing at a sufficiently ra~id rate as the free-stream Mach @mber

J

-— .. .— -- - -—--—— -. -—... .———.- ---—-- -. — --—- —---. ...—-——— .— ——
—

.— .- .—-. -
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approaches unity, the slope of the
given by equation (27). Whether or
for any given case still remains an

NACA TN 2726

Cp versus ~ curve at ~ = 1 is as
not this is a permissible assumption
unanswered question. Intuitive con-

siderations suggest that the results are probably applicable to symmet-
rical airfoils at zero or infinitesimal angles of attack but not to air-
foils at larger singlesof attack or to wings of finite span.

APPLICATIONS

Fundamental Hypotheses and Principles

The remainder of this report is principally concerned with the
deduction of the qualitative, and to some extent.quantitative,character-
istics of thin wings in transonic flow by means of simple logical con-
siderationsbased primsrily on the similarity rules together with the
following hypotheses:

(a) Nonlinear theory basedon equation (7) is applicable to all
problems.

(b) Linear theory based on equation (~) is valid for all wings at
Mach nuibers either appreciably below or above unity.

(c) Linear theory is.valid at all Mach numbers, except possibly
very near unity, for wings of small aspect ratio.

(d) The differential pressures between the upper and lower surfaces
of a wing having symmetrical airfoil sections sre propor-
tional to the angle of attack for at least a small range of
angles about zero.

.,

(e) The slope of Cp versus ~ at ~ = 1, defined by eqw-
tion (27), is applicable at least to symmetrical airfoil
sections at zero or infinitesimal angles of attack.

The consequences of the foregoing statements willbe consistently
pursued in the following sections in the discussion of the aerodynamic
characteristicsof airfoils and complete wings. Throughout, the analysis
will be restricted to wings having symmetrical profiles. The decision to
ignore the influence of camber is based not only on the desire for sim-
plicity but on the fact that symmetrical airfoils appear experiment-ally
to have superior aerodynamic characteristics in the transonic range.
Whenever specific results are to be used to illustrate the statements,
they will nearly always be for symmetrical-wedgeor double-wedge profiles
and for wings of triangular plan form. This choice is dictatedby the
present availability of theoretical results.

. .— . —.—-. ._.___... -_ ___ _ .
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The basic principle in the follcnnkg analysis is to express the
similarity rules in such forms that the lift, pitching-moment, and drag
coefficients can be studied for limiting values of the parameters with
no chsmce for ambiguity due to indeterminate forms. In this res~ect,
the statement of the sMlarity &les providedby equations (23)
t4rough (26) will be found particularly useful.

The
given by
tages:

(a)

(b)

(c)

The

similarity rules thus formulated are totally equivalent to those
equations (19) through (22) but possess three outstanding advan-

The indeterminacy at ~ = 1 resulting from two parameters
simultaneouslyvanishing is removed.

The squaring of the first parameter avoids the necessity of
changing parameters as sonic speed is passed.

,

The use of the parameter [(7+1)T]11SA rather than

-A aids in distinguishing the regimes inwhfch
linear theory is applicable in the transonic range from
those in which nonlinear theory must be used. Thus as
[(7+l)T]l@A atiroaches zero, linear theory is slways
applicable provided, in some cases, that ~ is not pre-
cisely equal to unity. On the other hand, as [(7+1)T]113A
becomes large, linear theory is not applicable in the tran-
sonic range and nonlinear theory must be used.

Pressure Drag of Symmetrical Nonlifting Wings

similarity rule for the pressme drag coefficient of symmetrical
nonlifting wings having profiles given by –

is obtained
ratiot

CDO =

(z/c) =(t/c) f(x/c, y/b) (29)

from equation (26) by identifying T with t/c, the thickness

(t~c~is

I

I&-l

(7+1)W ‘0 “[(7+1)(t/c)]2/3’
1

[(7+l)(t/c)]ljsA =

(t/&~~ “
Do (5., ~-)

( 7+1)~/3

.

(30)

/
. . . .- .-.————-.—-. .-—.—- —— ——-_ —___ ..—_.. ------ ... —.———.-. . .=— —— :..—-——— -------—- --
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!

Therefore, drag results for s-trical nonlifting~wings should be
presented by ~otting the miation ~th go ad A of a gener~ized ‘i%
coefficient C.. defined as follows:

Go . (7+1)1/s

(t/c)5@
CDo = Do (~o, ~) (31)

At Mach numbers sufficiently remove? from unity for linear theory

‘0 apply> ho must be independent of 7 since 7 does not appear in
either the differential eqution or boundary conditions of linear theory.
Therefore,

l!- a

1.[(7+l)(t/d]l/s A =- Dot
E;I

(ml A) (32)

where it should be recalled that Dol is a
sonic and supersonic flow. Equation (32) iS
Prandtl-Glauertrule. For subsonic flow, D*Abbert’s paradox requires
that the drag be zero; therefore, for aIl wings,

different function for sub-

equivalent to the extended

(33)

.

For supersonic flow, wave drag exists which depends on &2-l A
as well as on the plan form and airfoil section. The general functional
relation for the drag coefficient of a family of affinely related wings
at zero angle of attack, as given by linear theory, is

Wings of infinite aspect ratio.- For wings of infinite span (or
airfoils), eq~tion (s2), representing the functional relation of linear
theory for the drag coefficient, reduces to the following:

,.
.

.

. —.—.— ..— .—. ————. . ——— —.—— .—. ——. .
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where the value of the constant depends on
Numerous experimental data show variations
at Mach numbers greater than about that of

I

,:

1

I
I
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(ca& = - x Const.,
Const●

(Y%)> = ~ (35)

the shape’of the airfoil.
consistent with equation (35)
shock attachment. At Mach -

numbers closer to unity, however? the theoretical values provided by
this equation are unreliable. It is etident from inspection of the
results of linear theory itself that such a failure occurs, since the
perturbation velocities assumed to be small in the derivation of the
equations are found to become infinitely large as the Mach nuniber
approaches unity. It is apparent9 therefore, that it is necessary to
resort to nonlinear theory for the calculation of the drag of airfoils
in the transonic speed range.

A similarity rule for the section drag coefficient of symmetrical
nonlifting airfoils which is ,validthrougho~t the Mach number range may
be obtained from equation (31) by setting A equal to infinity.

r%=

At

and the

(,+1)’@ c% .=(c~).D (~o, co). d (~)
(t/c)5/s (t/c)’@ ‘& 0

00 (36)

a Mach number of unity, the similarity parsmeter

function do (Eo) is a constant.
govanishes

(c-~) = do (0) = const.j (c%) .=
go=o ~=~ (7+1)l/s

x Cotito (37)

indicating that the section drag coefficients of affinely related air-
foils are proportional to the five-thirds power of their thickness
ratios. If hypothesis (e) is acceptedj the variation of c% with ~

at ~ = 1 is found to be zero for complete airfoils

Since calculations have been made of the drag in transonic flow of
simple symmetrical sections at zero angle of atta~, it is not necessary
to speculate further regarding the variation of cd. with go. At

present$ however, the profile for which the most complete information
exists is not a complete airfoil but is a single-wedge section followed
by a straight section extending infinitely far downstream. In accord
with some of the original papers on this subjects the single-wedge section

..—..—.- —.....- —.-—---- .——. .. . .—..— ---- .-—-.—- . .- -. .—------ —-- -- -
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is considered as the front half of a symmetrical double-wedge airfoil
having a chord c. The value of t/c in y% and go is defined accord-

~Y* Solutions for this section obtafied using the nonlinear small
perturbation theory have been given for flows having subsonic, sonic, and
supersonic free-stream velocities, respectively, by Cole (reference 10),
Guderley and Yoshihara (reference 7), and Vincenti and Wagoner (refer-
ences 8 and 9). The linear-theory solution for pure supersonic flows
has been given by Ackeret (reference 25). The slope of the drag curve
at ~ = 1 is no longer zero as indicated for the complete airfoil by
equation (38) but takes on a positive value given originally by
Liepmsmn and Bryson (reference 17) and readily derivable from equa-
tions (27) ~d (38).

dc

( )

do 4t

()
‘c= .2=- -

c y+lc’ d~o
Mo=l Eo=o

(39)

All of these results are cotiined ona single graph in sketch (b). It

I 4’ \ I
- f \

~V.ncenfi and
Single -wedge

section

~2”
Guder/ey, and Yosh/ttora— ‘
L fepmwnn and Bry80n

Cole

-3 -2 -/ o / 2

may be seen that the preceding remarks concerning the relation of linear
theory and nonlinear thkory and the slope of the drag curve at a Mach
number of unity are verified by this comparison.

An indication of the accuracy of the theory is provided in
sketch (c), which shows the theoretical curve of sketch (b) together
with corresponding results obtained from wind-tunnel experiments by
Liepmannand Bryson (references l~and 16). The vertical lines through

—__ _. _ — - ———_._. - -~. - _ _ __ _ _. ... .- ——_.. . . _______ .
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Sing/e-weo’ge-

Section
[

wedge semiangje
o 45: 2-
0
0

,;:.O —

-, -/

the experimental points indicate estimated accuracy of the data. Three
single-wedge models having semiapex angles of 4.5°, 7.5°, and 10° were
used in the tests. This figure illustrates the degree to which the
similarity rules are able to reduce data from a family of profiles having
different thickness ratios to essentially a s@gle curve.

The double-wedge airfoil has also been treated theoretica~y through-
out the entire Mach number range. Solutions for & < 1 have been given’
by Trilling (reference l.1),for ~ = 1 by Guderiey and Yoshihara
(reference 7), and for ~ >1 by Vincenti and Wagoner (references 8
and 9) . The results of their calculations are shown in sketch (d).

Llepmann ondBryson
6

‘1 Guderley and Yoshihoro

\>
\ -Vincenfiond

Trilling Wogoner

\ . \
N

q
Double- wedge oirtoll o

{ 2

— Nonlinear theory
4 --- Lhe~ theory

Tronsonh
●

1+ Supersonic
-3 -2 -/

‘L. l
2 3

(d)

.. . . . . . . . . .. . __—— -_.. _._.- -.—— —— ~. — -.. . .. . . ———— —. ——.. ——. —---— -——-
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For ~ <1, Oswatitsch has given a~roximate solutions for the
pressure distribution on symmetrical biconvex airfoils (references 12
and 13) and for the pressure distribution and drag on NACA four-digit
symmetrical airfoils (reference 13). This work has recently been
extended to several IWCA 6-series airfoils by Gullstrand (reference 14).
Their drag results are generally similar to those indicated at corre-
sponding Mach nunibersfor the double-wedge section in sketch (d).

Wings of finite aspect ratioo- The simil~ity rules for wings of
finite aspect ratio are givenby equations (31) and (s2). Although no
essential simplification of the rules occurs for wings of smsll aspect
ratio, the range.of applicability of linear theory increases as the
aspect ratio decreases. This point can be illustrated by considering
the results provided by linear theory in a specific case. A good example
to select for this purpose is that of the drag in supersonic flow of a
triangular I.iingwith symmetrical double-wedge airfoils. (See refer-
ence 26.) This particdar choice was made f6r the following reasons:
(a) Solutions are known for all supersonic Mach numbers; (b) the double-
wedge airfoil discussed in the preceding sections corresponds to the
limiting case of the wing of very great aspect ratio. The drag results
provided for this wingbylinear theory are presented in sketch (e).

6, I I I

L-42*

6

C;.

4

2

\ / /j-. ~

?

/

\
\ A\/

\ \-—.————
—Nonlipear t’heo~y
———Mear theoryn 1 /

“o
(f) ‘(*2

3

The results of~etch (e) are presented in a different manner in
sketch (f)~herein CDO is plotted as a function of go for various
values of A as suggestedby e.gyatio~(31). For purposes of comparison,
the curves for the drag of airfoils (A=m) computed by both linear and
nonlinesr theory are also included on the graph. As noted in the pre-
ceding section on airfoils, comparison of the ~esults of linear theory
with those of nonlinear theory for wings of A =m shows that good
agreement exists for larger ~o, but that-at smaller 5., the values

. —... ..—— -—. —. — ——. . ..——..-—.— .._.— ——.- .. . . .
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predicted by linear theory become too large. For wings of finite ~,
only the results of linear theory are available. !I!@eyalso exhibit the
trend of indicating infinite drag as to approaches zero; however, the
range of ~. inwhidh the value of Go is excessive is much less than .
is the case for ~ = co. In general, ~a of wings of small aspect ratio.

21

diminishes with decreasing aspect ratio:

The drag results ~f sketch (e) are ‘presentedti~till anot~er form
in sketch (g) in which is plotted the variation of CD. with A for
various vaiues of go. The princi-
pal merit of this method of plot-
ting isthat it aids in distinguish-
ing the region where nonlinear theory
must be used from that where linear
theory maybe useful.“ Thus ,thetwo-
dimensional nonlinear theory results
appear on the right of the graph
corresponding to large ~, whereas
the three-dimensional linear theory-
results~appear on the left for
small A. The filling in of the
remainder of the graph requires
either the solution of the equations
of three-dimensionalnonlinear wing
theory or the use of experimental
data. It should again be noted that
the present drag considerations apply
only to the pressure drag. Before
plotting experimental results in the
manner indicated, it is necesssry to
first subtract the friction drag.,

—“

61 .r
I I ))

Lift

Equation (24) indicates thatthe similarity rule for the lift
coefficient of wings having profiles given by

#

\ (z/c) = Tf(dc> y/b)

is

CL =
,$/3

{( Y+l)~/3 L ~’-l

[ (7+1)T]l/3A
[(7+1)T]2i3’ }

,

—..-. . .. . -J —- —— --— -— ---- -—— -—— -.—
-——- —— ——- -—- .-—, ------ -——–
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This equation has been the source of some confusion due to the multiple
role that T plays in determining the thickness ratio, camber, and angle
of attack. A more explicit statement of the similarity rule that is
useful for all wings having symmetrical profiles of nonzero thiclmess is
given by the following pair of equations:

[
(z/c) = (t/c) f(x/c, y/b)

-($)(:)1
( 40)

ICL= (t/c)=* ~, { %=.-l

(7+1)1/3 [(7+1)(t/c)l@
1

[(7+l)(t/C)]1/3 A, ~ =t/c

(t/c)=/~
L’ (~o, ~, ~)

(7+1)1/3
(41)

where the primes serve as a reminder that L and L’ are different
functions of the parameters indicated. If hypothesis (d) is accepted,
CL varies linearly with u for at least small angles of attack. It
is advantageous, therefore, to consider the lift ratio CL/a rather
than CL alone, thereby minimizing the influence of &

CL _ 1 (t/c)=/sL,(E , ~, :, = 1
—-.
a

~ (7+1)1/3 o

L“(~o, ~, ;) (42)

[(7+1)(t/c)11’3

Therefore,~lift r~sults tiybe presentedby plottin~the variation
with go, A, and a of a generalized lift ratio CL/a defined as foldows
(the primes on L have been omitted for simplicity):

&~~= [(7+l)(t/c)]l/3(CL/U) = L(go, X, :) (43)

-
Equation (43) shows that CL/a depends upon three parameters, one

more than the number which can readily be treated on a simple plot.
Simplification canbe gained, of course, by holding one of the parameters
constant for an entire graph. Res#ts so present~d are particularly
interesting for ~o= O, (~=l); A=m, (A=rn);and a,=-=,(u=O). The latter
scheme is especially good since expertients indicate that lift curves of
wings are of~~ relatively straight lines at all Mach nunibers. The
vslues of ~/a, at % . 0 might, therefore, be expected to be good indi-
cations of the actual values for other & The appropriate similarity
rule may then be written

— ——— .— .— .— — . _ .—.—____ ..— .—
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For cases where linear theory applies (hy-pothese~(b) ~d (c)), two
statements can be made immediately which provide further information
about CL/a: (a) (C~a)Z must be independent of 7, and (b) (CL/a)Z

must be independent of & by virtue of the superpositionprinciple of
linear theory. Therefore, following the procedure used in equation (32)
gives

()CL 1—= ( ) 0Lz ~’”A, ~ =—

aim’ a -1 & %(m~)”
(45)

where again Lz iS a different function for subsonic and supersonic flow.

Wings of infinite aspect ratio.-J?orwings of infinite aspect ratio,
the functional relation of linear theory for the lift ratio given by
equation (45) reduces to

()Cz Const●

(-)

Cz const.—=
,a z

J--’ “Tz’~
( 46)

Solutions of the equations of linear theory show that the value of the
constant is 2fi for subsonic fluw and four for supersonic flow. Exami-
nation of these results indicates t@t they are valid at Mach numbers
appreciably less than or greater than unity, but are invalid for Mach num-
bers near 1.

A similarity rule for the section lift coefficients of a family of
affinely related symmetrical airfoils which is valid through~ut the Mach
number range may be obtained from equation (43) by setting A = w.

(.47)

At a Mach
expression for

number of unity, go is identically zero and the
the lift ratio becomes

(c~a) =1(0, ~), (c~/a) =
1

()
10,”

~o=o %=1 r(7+l)(t/c)]1/3 T
( 48)

Equation (48), when considered together with hypothesis (d), indicates
that at sonic speed the lift-curve slope at zero angle of attack of air-
foils of a single family varies inversely as the cube root of the thick-
ness ratio. Note that as the thictiess ratio goes to zero, the value of

. the lift-curve slope at zero angle of attack is tidicated to become
infinite just as is indicated by equation (46) to he the case according

.

- . . . . . . .— -——— -.————.—-— -—— .—.- . —–—-—
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to linear theory:
that the thichess
is proportional to

On the other hand~ for very large & it is plausible
ratio does not have any effect on cl; therefore CZ

the two-thirds power of a for large a. If hypothe-
sis (e) is acceptable, that is, if it can be assumed that the detached
bow wave in front of a symmetrical airfoil at an infinitesimal angle of
attack iS a normal shockwave so that (d~/~)%== iS givenby equa-

tion (27), the lift-curve slope at zero angle of-attack is stationary
with Mach nuriberat ~ = 1, since

At present, the only available solution of the nonlinear equations
for transonic flow about lifting airfoils is that of Guderley and Yoshihara
(reference 27) for the case of sonic flow about a symmetrical double-
wedge airfoil at an infinitesimal angle of attack. They found that .

(C~m) = 3.32 (5”)
Eo=o

“Go

The foregoing results sre sumar ized in graphical form in sketch (h).

o
/

u
\

Prand?’1-GbuertY /
/

\

,A,
g \ Ackeret

7 \’
/’

/- 4-
\

-~ \\4+ -

DWb/e-weo’ge airfoil, 2= O
----

Gwu’erley and Yoshihara — Nonl{n{

‘3(h)
-2 ‘6’ ‘ 2 3

\

Wings of vanishing aspect ratio.- Two well-ho- results of linear
theory are that the lift-curve slopes of wings of finite aspect ratio
remain finite throughout the entire Mach number rage and that the

.

.

———— –..———-.—-- . . —. . . . . ——- .— —. — -— —— ——.—..—. . .— - —. —.— - . .



4U

.

f

wcA ~ 2726 25

lift-curve slopes of wings of’vs&shing aspect ratio are independent of
Mach nuniber. Therefore, equation (45) implies that-(~/a) ~ must be

proportional to ~ either for wings of vanishing A h w flow> or
for any wing in a flow of vanishing 5.:

The value of the constant must be determined for each plan formby
actually solving the equations of linear theory. For wings hawtng trail-
ing edges which possess no cutouts extending forward of the most forward
station of maximum span, that is, triangular, rectangular, elliptical,
etc., as well as certain swept-back wings, the value of the constant
is ti/2.(References21, 22, 23, and 24 should be consulted for -tier
discussion of this point as well as for the values of the constant for
wings having cutouts in the trailing edge which violate the above stated
condition.)

It is seen from equation (51) that the lift-cuxve slopes of wings
in sonic flow decrease continuously in magnitude as the aspect ratio
diminishes towards zero. Since, in addition, the lift-curve slope given
by linear theory
the lift restits
nonlinear theory
but also for all
ratio.

has its maximum vslue at ~ = 1, it is conjectured that
of linear theory are a good approximation to those of
not only for ti wings at Mach numbers far from unity
Mach numbers for wings of sufficiently small aspect
.

wing s of finite aspect ratio.- At the present the no solutions of
the nonlinear theory are available for wings of finite aspect ratio.
However, from the remarks of the.pre-
ceding paragraphs, it is apparent that G
a curv~represen~ing the vsriation
of CL/a with A
and~ would have
totic properties
linearly with AX
independent of A

for constant Eo
the_following asymp-
CL/a wo~~ bcrease
for small A~and be ●
for large A. ~

ord& to give a better idea of the FL
numerical values to be expected, a set ~
of typical results of this type are
shown in sketch (i) for wings having z
triangular plan forms and symmetrical
double-wedge airfoil sections. The
supersonic results are those of1
Stewart, mown (references 28 and 29)).
and others. The subsonic results sre o

A

those calculated by De Young and Harper - % 2. .
(reference 30) using Weissinger’s
modified lifting line theory.

<
#

A+,

mlinear fi
‘near fheo

z’

-. .—..—,—-—-. --- .. . . . .. . -- -
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An interesting result of the foregoing remarks concerns the
influence of thi.clmessratio on the lift-curve slope at zero angle of
attack of wings in sonic flow. For wings of large aspect ratio, the
lift-curve slope is inversely proportional to the cube root of the thick- ‘
ness ratio. For wings of small aspect ratio, the lift-curve slope is
independent of the thickness ratio.

Pitching Moment

The remarks on the pitctig-moment characteristics of wings follow
in a manner exactly analogous to those just stated for the lift charac-
teristics. The corresponding statements for the pitching-moment coef-
ficient Cm maybe obtained by simply replacing CL with Cm and L
with M. Thus, the similarity rules for ~ corresponding to equa-
tions (43) and (45) are the following, respectively:

(~—a)= [(y+l)(t/c)l@ (c#a) =M(~o,~,~) (52)

(53)

where once more M andMZ are different functions for subsonic and

supersonic flow. The only difference between the discussion
of ~ and CL. is that the values of the constants of equations (M),
(50), and (51) are, of course, different. Graphs of theoretical

f ‘\
I \ _Ackeret

%and?l- Glauert /F
\/

‘/ ~: , \ k

/’ Y.
\ ~

/“
—_

—, ~
D~b~- wedge alrfoila ;= O — Nonl(neor theory

Guderley and Yoshihara ––– ~ineor Meow

‘3 {J)
-2 -1

O[.’
2 3
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pitching-moment characteristics for airfoils and for triauzular wimzs
corresp~nding to the lift results of sketches (h) and (i) are shown in
sketches (j) and (k). The moment axis

. forwardpoint of the wing.

Sometimes it is desired to
present pitching-moment character-
istics of wings in terms of center-
of-pressure position rather than
pitching-moment coefficient. Since’
the center-of-pressureposition can
be expressed in terms of Cm and CL
by

Xc.p. cm—= -—
c CT

( 54)
-JJ

the resulting expression for the
center-of-pressureposition found
through application of equations (43)

. ad (52) iS

.

is taken to be through the most

C. P.(EO, & :) ( 55)

The corresponding relation for linear theory is

(*);%(mA)= c.%(dw~) (%)

Pressure Drag Due to Lift

The similarity rule for the pressure drag of inclined wings havtng
symmetrical airfoils is indicated by equation (26~ to be the following
if the dependence on a and t/c .is written in the same manuer as in
equations (M) and (41):

(57)

.
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The portion of the drag due to lift is therefore

T

J

I

(58)

Since @ varies, in most cases, with the square of a
a small range of a surrounding zero (hypothesis (d)),
tageous to consider the drag-rise ratio ~/a2 rather
thus, ,

for at least
it is advan-
than Am alone,

A% 1 (t/c)5@

a’‘= ~ (7+~)1/3 ‘A ‘Eo’x’:) = [(7+1] (:/c) ]l\3 ‘i ‘%) ‘j ‘)
(59)

Therefore, drag-due-~o-lifi~data-shouldbe presented by plotting ~
variation with ~o, Ay and cc .ofa generalized drag-rise ratio ACD/a2
defined as follows (the prime on DA being dropped for simplicity):

(60)

The actual presentation of the results of this three-parameter system
may be accomplished as described in the section on the lift of wings.
Of particular interest is the simplification resulting from presenting
only the values found at a = O. The simplified similarity rule is then

(61)

For cases where linear theory applies, the following results hold:

(62)

Wings of infinite aspect ratio.- For wings of infinite aspect ratio,
the functional relation of linesr theory for the drag due to lift,
equation (62), reduces to

()fkd const. A~d

()

const.

7 1=-’
Ta , ‘m

(63) .

.

.
‘,
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Solutions of the eqyations of linear theory show that the value.of the
constant is zero for subsonic flow and four for supersonic flow about any
symmetrical airfoil. These results are valid at Mach nuoibersappreciably
less than or greater than unity but are invalid for Mach numbers near 1.

A similarity rule for the drag due to lift of a family of affinely
related symmetrical airfoils that is valid throughout-the Mach number
range may be obtained from equation (6o) by setting A = CO.

(64)

At a Mach nuiber of unity, equation (64), for the drag due to lift,
reduces to the following: . t

-

()&d = dA (O,ti),
()

ACd- ~ 1’

7 ~=
()

dA O, &
[(7+1) (t/c) ll/s

(65)
go=o Q=l

Equation (65), together with hypothesis (d), indicates that, at sonic
speed, the drag-rise ratio Acd/ag of airfoils of a single family varies
inversely as the cube root of the thickness ratio. For very large values
of ~, the thiclmess ratio cannot have any effect on Acd; therefore,
Acd is proportion@ to the five-thirds power of the singleof attack.
If hypothesis (e) is accepted, c#a2 at infinitesimal angles of attack
is stationarywithllacknmiber at ~ = lj tkt is,

(66)

Wings of vanishing aspect ratio.- Since the drag due to lift
calculated by means of linear theory remains finite throughout the Mach
nuniberrange, it is assumed, as in the preceding sections on lift and
pitching moment, ~hat linear theory is capable of describing the drag-
due-to-lift characteristicsof wings of vanishing aspect ratio at all Mach
nuuibers. Therefore the following relations stemming from equation (62)
hold:

(w (%uxxConSt- ‘ (67) ‘

.

Solutions of the equations of linear theory show that the value of the

t’
COIMtmt is It/4 for all wings of small ~mA whose trsiling

(__.. . ..— -—— -.—- -——- — —.———-— --— — ..—= -. ._. - . ...—
,
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edges possess no cutouts extending
of maximum span (i.e., triangular,

forward of the most forward station
redtangularj elliptical wings, etc.).

The quoted value of the constant corresponds to the development of the
full “leading-edgeforce.” It is down that this force is oftentimes
not completely realized due to a local separation and subsequent reattach-
ment of the flow mound the leading edge. If the leading-edge force is
nonexistent, the corresponding value for the constamt is Yr/2.

Wings of finite aspect ratio.- At the present time no drag-due-to-
lift results have been obtained from the nonlinear theory for wings of
either finite or infinite aspect ratio. The foregoing remarks, however,
are s ficient to determine that a curve representingethe variation

?of Am a2 with ~ for constant 60 and % would increase linesrly
with z for small % (unles~ the degree of attainment of the leading-
edge force also depends on A) and become independent of ~ for large ~.
The resulting curve would presumably have the same general appearance as
that shown in sketch (i) for C~a.

It may sometimes be desired to present drag-due-to-liftresults in
terms of A@/CL2 orA~/aCL rather than A@/a2. The similarity rules
for these quantities can be quicldy deduced from the foregoing results.

Ames Aeronautical Laboratory
National Advisory Committee

Moffett Field, Calif.,
for Aeronautics
March 6, 1952

,
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RELliTIONBETWEEN U. ANO

OF THE T!RANSONIC-FLOW

a* LwAmmNTs

EQUlflTONS

Equations (3), (7), (8), (10), and”(12) were presented in the text
as being applicable to the study of transo~c, as well as subsonic and
supersonic, flew about thin wings. These equations, repeated below as
equations (Al) through (A5), will be referred to as the
the problem since the perturbation velocities are taken
stream velocity UG. The perturbation potential Q is

Q.-uOx+@

The differential equation is

U. statement of
about the free-
defined by

(Al)

. Tke bouu~ry conditions are

at x . -m
.

(%JO = (9y)o= (92)0 = o
at the wing surface

.

,.,

The pressure coefficient is given by

(A3)

(A4) .

(A5)

In the a* statement of the transonic-flow equations (equations (13)
through (17) in the text), it is assumed that all velocities are only
slightly different from the critical speed of sound a*. The perturba-
tion potential is de:ined by

(p? = -a*x + Q (A6)

and the resulting differential equation is

(J37)

If the perturbation analysis is carried out in a coqletely consistent
manner the boundary conditions are:

. . ., ----- .—. - . .. ,— ----- .—..— --- --———- -—- -—- ----— -—---— --—-- -“-—”—---
- ---—- - — -—
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(@y)o= (@z)o= o

at the wing surface

(’?=) ()* dz

2?=0 ‘a xi
and the pressure coefficient is given by

The relation between the U. and the a* statements

(A8)

(A9)

(Ale)

can be deter-
mined directly in the following ber. The differential equations for
q! and Q will be the same if

or if

qf=2 q)- a* (1 - h’) ~
U. 7+1

The bound-y conditions for @ corresponding
equations (A3) and (A4) are

atx. -rn

(9;) o = ; (qx)o-a*p+-lMO’)=
0(

(9;)0 -a*-( TY)O=% ‘ ~.(@)
o

at the wing surface

Finally the pressure

Cp’= Cp

coefficient is given by

(All)

to those stated for q in

_ a* 1-M02
Y+l

.:(q)z)o .0
0

“ ‘1

(A12)

(A13)

a* (1 - ma
+

17+1 =

‘!

(A14)

Comparison of the above equations with those given previously for
the completely consistent a* analysis reveals their identity. As far

.
..— — —-..— —.—————.— —-.___ . . .. . . _---.-
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as obtaining the values of ~ is concerned, therefore, the a* state-
ment of the problem may be regarded as a transformation of the more gen-
eral U. statement. The results so obtained are consequently valid
throughout the Mach mmiber,range. As is evident from equation (All),
however, the local velocities, and consequently the local Mach numbers,
found in the a* analysis are only correct when the free-stream Mach
number is unity.

.’

.
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“ APPENDIXB

DERIVATION OF SIMILARITY RULES

The basic equations of linear theory and of nonlinear theory of
transonic flow may be summa??ized as follows. The differential equations

The boundary conditions are:

atx= -aa

“1a% 0 Linear “ (Bl)
—.
az2 7+laqaW

U. 7G~
Nonlinear (B2)

(2) =($’)0=(2~=0
at the wing surface

(z)av . a
lr ()

f;, g
~ T a(x/c)

Z=o”

(B3)

(B4)

where the geometry of the wing is given by

(z/c) = T f(x/c, y/b) (B5)

The yressure coefficient is given by

Cp=-gg (B6)
o

If the differential equations are now transformed into a system with
primed quantities and the proportionality or stretching factors are
denoted by s with appropriate mibscripts such that .

Xf = Sxx, yt = syY> Zt = Szz, ~t = S(pp, u-o’= Guuo

m=spdx> 1

(B7)
(7+1)’ =1’’ =Srr=Sr(7+l)

..— ——. ————.. ..—. ..— .—- -—...— ——. ..---- ___ ....__ ._.___ ._
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equations (Bl) and (B2) become

35

Line= (B8)

Similarity is assured if 9’ satisfies the same differential equation
and boundary conditions as ~. In order for the two flows to be the
same, therefore, the following relations must hold:

(/~ At Linear (B1O)
SySYSP1—=l ‘T .—=

Sx > s= Y Sxsu

I
Sp2/sl-l NonIinear (BD)

(
where, for line~r theory, Apt is an arbitrary constant which canbe
equated to Szpjsr if desired.

An immediate consequence of this transformation is that the wing
plan forms undergo an affine transformation such that the aspect ratios
of wings in similar flew fields are related, according to both linear
and nonlinear

or by

Since @ is

theory, by

.
Al=~A=

$A=m.A “
(B12)

&a’
proportional to P,

are automatica-~y-satisfied. The
given in either of two fcrms:

A’=&~2A (B13)

the boundary conditions at x = -CO
boundary conditions at the wing may be

()52 ?!? .aTJ.Lfz, z
S=, az Sz ()0 a(X/C) C b

Z=o

()aw (X!

w=uo’”*f’ =’

(B14)

)+$ = ‘@o “ a(x~/c’) ‘(55)(B’5)
Zt=o

whence, if the two wings have the same or~nate-distribution functions,
that is, if fr(x~/cY, yt/bt) = f(x/c, y/b), the ordinate-amplitude
parameters are related as fo~ows:

..-. —.. --- -.. —.– -—— -. .—. —..-.-— .. .—. -—— -- ..-.+ .—— -- —.. . . .
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+J@. Linear (B16)

# ‘=[~~’2 [fi].’’Notiinear(Bl~)

or as

Linear (B18)

a =@&7-s Nonlinear(319)

The relation between the pressure coefficients at corresponding
points on the wing surface is given by

f .

() [
2/3

L?
=

T 7+1

1

1/3
5

(7+1)‘ -

or mme completelyby

.

[*1’’3W’WETWV=A;~d-

Linear (B20)

Nonlinear (B21)

Linear (B22)

Nonlinear(B23)

The foregoing relationships may be summarized in the following
statement: The similarity rule for the pressure coefficients on a
family of wings having their geometry given by

(z/c) =~f(x/c, y/b) (B24)

—. —. —— .-. ——--- ---- ----- .. . . —..
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is

37

The similarity rules for the lift, Titching-moment, ~d wag coefficients
given by linear theory are

The corresponding similarity rules given by nonlinear theory are

.

CL = -*L {*J

cm =
,r qs

{

A/=7
(,7+1)1/s M [(7+1)T]l\s’

~ A} Nonlinear(B30)

j= A} Nonlinear(B31)

T=:,3D L*, ~Aj .odtie=(B32)CD = (7+1)

It should be noted that the foregoing equations have been written for

subsohc flow where MOS 1. If Me.? 1, the radical ~~ should

be replaced with ~~.

In the linear-theory analysis, A has remained a completely arbitrary
coefficient to be selected as best suits the particular problem at hand.
For instance, the compressible-flowrelationships between ”twowings having
identical pressure distributions are found by setting X = 1. If, on the

other hand, A is set equal to ~1-Mo2, the thickness ratio, camber, and
angle of attack of related wings are identical. The greatest simplifi-
cation of the similarity rules of linear theory occurs ?ihen A is set equal

to ~~ /T since the number of parameters necessary to show the
results of linear theory is thereby decreased by one. This degree of

...- . -.—.. . .— -—- . . -— _ .——— ——.- _- .-._.. .- —— --- ..-. —-. .— —-— — -
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arbitrariness in the similarity rules for linear theory is in contrast
to the case f@T nonlinear transonic theory in which no undetermined
coefficient like X is to be found.

For the
sonic flows,

because then
to those for
implies that

present purpose of gaining a better understanding of tran-
the most advantageous choice for A is

“w (B33)

the similarity rules for linear theory assume forms identical
nonlinear transonic theory. This is important since it
solutions of linear theory and of nonlinem transonic theory

can be expressed as functions of the same parameters and hence can both
be plotted on a single graph in terms of one set of parameters. The two
theories would, of course, yield two distinct curves on such a plot. The
curve for linear theory would be accepted as valid for purely subsonic
and purely supersonic flows but may or may not be valid in the transonic
range, as discussed previously. The curve for nonlinear transonic theory
is valid not only for transonic flows, but for subsonic and supersonic
small perturbation flows as well. As is evident from the derivation of
the basic equations, however, the results of the nonlinear transonic
theory should
linear theory
the fact that

be considered to be of only equal accuracy to those of
in the definitely
the solutions are

subsonic-and supersonic-regimes,despite
much more difficult to obtain.

— _ —— ———.— - —____ _., _,_ ,- -. _ _ _ - _ -
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APPENDm c

SHOCK-WAVE RELATIONS

Similarity rules were derived in appendix B through consideration
of the differential equation for the perturbation velocity-potential ~.
Since the tramsonic equation involves the existence of a velocity poten-
tial, the derived similarity rules might be assumed limited to regions
of flow lying between discontinulties or shock waves. It will be shown
in the following, however, that the same basic parameters govern the
transition through weak normal or oblique shocks so that the similarity
rules can be used to relate flows containing shock waves.

If the velocity immediately before the shock is designatedby ~1
and the velocity components immediatelybehind the shock extending in
directions parallel and p~endicular to fil are designated, respec-

respectively, by 8= and ~ V2 + Wa , the classical equation for the
shock polar provides that

Except for the important case of the bow wave in s~ersonic
is not generally alined with the directioriof the x axis,

(cl)

flow, c1
but iS

inclined a small angle. With-the resolution into components parallel to
the sxes of the coordinate system and upon carrying out a small pertur-
bation smalysis smalogous to that performed in the derivation of equa-
tion (7), equation (Cl) provides the following relation between the
velocity components (potential gradients) immediately fore and aft of the
shock:

F-%2)(’X2+XJ2+(’=’J2+(“$’’,)2=
T(’X2:’X9(’-)’ (C2)

This equation corresponds to the shock-polar curve for weak shock
waves inclined at any angle between that of normal shock waves and that

,- of the Mach lines.

The striking correspondence of equations (C2) and (7) make it almost,.
self evident that the shock relations satisfy the same similarity rules

. . -....-—--—..——.. .-— ...-—......--——..-..-.—— ,—-.._________._ ..___ _ ._._ ....—-_ ._
,,
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as the differential equation for the perturbation velocity
~is can be verified quickly by transforming equation (C2)

NACA’TN2726

potential.
into a system

~~th primed quantities related to the original quantities by equa-
tion (B7), thus

yyw$?’) (’@’d’ (C3)

In order to assure that flows through shocks in the primed and unprimed
systems are similar, the following relations must hold:

These are identical to the requirements already specified in equation (Bll)
for similarity of the flows in the shock-free regions. Therefore it
follows that the similarity rules developed in appendix B on the basis of
the potential equation sre, in fact, valid for flows containing shock
waves.

.

6
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APPENDIX D .,

SLOPE OF PRESSURE CURVE AT ~ = 1

Consider a transonic flow problem in which the free-stream Mach
number is slightly less than unity (~ = 1 -~ where ~ is a small posi-

tive quantity. Since the object is only to determine the value of a
slope as E approaches zero, there is no loss in accuracy introduced by
retaining only the leading powers of E. To this order, the differential
equation for ~- is #

The boundsry conditions are:

at x=-co

(%) ~ = (9;). = (Q;)o=o ‘ ,

at the wing surface

(D2)

(D3)

The pressure coefficient is giveq by

If the Mach number of the flow is

(92- (D4)

now increased to ~+ = 1 + G,

keeping a. constant, the differential equation for p+ is

7+1-2E T&+ T&+ V;z=
z) ‘;TL

(D5)

hence q)+and g– both satisfy the same equation provided

7+1 q&+2E= 7+1 - -=
~’ ~

(D6)
am) ‘x

c

or if

(D7)

—. ._ .— --- . . —_._. —----- -. — . ...— —.- ——. —- - -- -
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Consideration of the boundary conditions at the wing shows that the
wing geometry is preserved by the new potential since

1 ()(q);) = T- a f- :, ;
(l-e)ao Z- a(x/c)

At x=-~, however, an alteration of the boundary conditions is
observed since the velocity perturbations
a uniform value @ven by

(q>)O=-*=_ *
7+1 ‘

(D8)

no longer vanish but take on

(?; )O= (9>)0= o

It can be shown that such a velocity perburbatiop is just
would exist if there’were a normal.shock wave of infinite
standing infinitely far ahead of the wing. (See equation
can be assumed that such a shock is actually present, the
ficient in Slightly supersonic flow is related to that in
sonic flow in the following manner:

The slope of the pressure curve at M. = 1 is therefore

()
%.m S=L
% E+ o 2E .Y+l

~=1

(D9)

that which
lateral extent
(C2).) If it
pressure coef-
slightly sub-

(D1O)

(Dll)

the value originally given by Liepmann and Bryson (reference 15).

It is to be emphasized that it is necessary to assume the presence
of the velocity field at x = -CO givenby equation (D9), due presumably
to a normal shock wave, in both the present derivation and those of
references 8 and 15. Whether or not this is a permissible assumption for
any given case still remains an unanswered question. Intuitive consider-
ations suggest that the results are probably applicable to symmetrical
airfoils at”zero or infinitesimal angles of attack but not to airfoils at
~larger angles of attack or to wings of finite span.

——.——— _ ..—= —.. —— . ~———-—- —...= ——. -
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